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With the increasing effects of climate change and high costs of energy, many rural Alaska communities
are working to implement local alternative energy solutions to improve energy security. Integrating
renewable energy systems can reduce reliance on fossil fuels and subsequently improve food, energy,
and water (FEW) security. In this study, wind energy modeling techniques using local airport meteo-
rological data were convolved with community loads to determine the most cost-effective combinations
of wind turbine technology and dispatchable loads for improving FEW security in a southwestern Alaska
village. This approach is different from wind assessments that exclusively analyze wind resources. A
100 kW wind turbine was determined to be suitable for the community, resulting in a capacity factor of
16.7% and levelized cost of energy (LCOE) of $1.15/kWh, with diminishing returns for higher wind turbine
capacity. The results from the dispatchability study indicated that dispatchable loads could handle the
intermittency of the wind resource with up to 86% of their annual load met. More work is needed to
understand the impact of integrating and scheduling dispatchable loads into the grid in practice.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

With decreasing costs of renewable energy technologies along
with volatile oil prices, renewable energy has become an appealing
option in many rural communities [1]. This trend is especially true
in Alaska's several hundred remote communities, where subsis-
tence hunting, food production, industry, and household and
municipal functions all depend primarily on expensive imported
diesel and gasoline. As a result, communities are vulnerable to
economic, environmental, or social changes that affect fuel prices
[1,2].

Food, energy, and water security are inextricably linked in rural
Alaska. High fuel prices result in exorbitant electricity costs,
exceeding $1/kWh in some communities before subsidies [3,4].
Diesel fuel is shipped by plane or barge in short seasonal windows
and then typically combusted in powerhouse generators that are
maintained by each community. Since any food beyond what is
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harvested locally is also imported, food and fuel prices are tightly
coupled. Climate change exacerbates these circumstances, as
hunting and gathering routes are compromised by melting
permafrost and ice [5]. Often, residents must decide between
spending money on food or fuel to heat their homes [6,7]. Food
grown in local greenhouses is one solution to reduce imports, yet
there remains a substantial need for energy to operate the green-
houses in cold and dark seasons. Similarly, water can be expensive
to process using electricity from diesel generators, often resulting
in low water consumption per capita and increased risk of disease
from contaminated water or poor sanitation.

Wind resources represent a viable energy alternative in many
Alaska communities. As wind turbine technology has matured and
become more affordable, interest in small-scale wind turbine in-
stallations has grown in western Alaska. To maximize the effec-
tiveness of wind turbines, it is essential to identify installation
locations with the greatest wind resources [8]. However, rural
communities often lack data acquisition infrastructure, and their
remoteness limits opportunities for detailed site surveys [9,10]. Due
to the varied terrain in many of these communities, specific wind
flow modeling is ideal for obtaining accurate data, but this requires
techniques that are often computationally intensive [10].
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Global databases or mesoscale modeling and national or
regional wind atlas data have been used to model wind resources
[11e13]. However, the heights of consideration (50, 80, and 100 m
above ground) and low resolution (1 km) pose challenges. This
information is useful for understanding wind patterns and broad
development areas, but it cannot account for issues caused by
complex terrain [10]. Given these circumstances, local meteoro-
logical data from airports may be the best option.

However, no comprehensive model has been developed that is
broadly applicable to Arctic communitiesda model that can
translate local wind resource data into potential energy, integrate
community desires for type and size of wind turbine(s), and make
accommodations for loads that may be installed to absorb excess
energy. Thus, the purpose of this analysis is to combine wind
modeling techniques using local airport meteorological data and
convolutional load integration to determine the most cost-effective
combination of wind turbine technology and loads that can
improve food-energy-water security in a southwestern Alaska
village. The community of interest has a population of about 70
people with 25 housing units and three 67 kW diesel-electric
generators as the primary source for energy generation [14]. The
community has recently installed an in-river hydrokinetic power
generation device and has expressed interest in wind turbine
technology, as well as modular and dispatchable loads to improve
food and water security [15].

Loads that can be controlled to operate on demandwith variable
renewable energy supply are termed dispatchable loads. Dis-
patchable loads that also improve food and water security are
particularly useful for Arctic communities. The dispatchable loads
of interest in this study include a CropBox© container farm for
growing food indoors year-round, a Lifewater™ system for treating
residential sewage, a Water Reuse system for recycling greywater,
and a residential water heater. These choices of dispatchable loads
are by no means exhaustive but represent possible and realistic
additions to remote community infrastructure in Alaska.

This analysis is part of the larger National Science Foundation
“MicroFEWs” project examining the connection between renew-
able energy and the Food-Energy-Water (FEW) nexus in remote
cold-region communities [15]. One key insight is that communities
can create synergies by selecting wind turbines and modular food-
water technologies as part of the same modeling process, which
can create cost savings and further improve FEW security. For
example, instead of choosing a wind turbine coupled with a battery
to store excess energy, the excess energy generation can be
matched with demand profiles of specific loads directly such that a
smaller battery, or no battery, is needed. In general, the FEW nexus
concept can orient community decision-makers toward optimizing
the integration of various local renewable technologies with food-
water loads to manage trade-offs and achieve sustainable devel-
opment goals [9,16e18].

Overall, this study aims to determine how communities can
increase their use of wind energy and redirect excess energy by
evaluating the best match between specific wind turbines and
dispatchable loads. An objective of the study is to develop a tool
that remote communities can use for assessment of the wind
resource. Dispatchability analysis derives from the necessity of
using innovative approaches for integration of renewable energy in
remote communities. The methods of assessment are discussed in
Section 2, which details the wind resource data and modeling
techniques to determine the amount of excess wind energy gen-
eration in comparison to the current community load. A convolu-
tional integration model is presented in Sec. 2.4 to match selected
wind turbines (Sec. 2.5) with specific dispatchable loads (Sec. 2.6).
Results of each wind turbine's generation profile, the cost-
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effectiveness of each scenario, and the optimal integration with
dispatchable loads are presented in Sections 3.1, 3.2, and 3.3,
respectively.

2. Methods

Fig. 1 shows a flow diagram of the wind resource assessment,
wind turbine selection process, cost analysis, and dispatchability
analysis processes used in this study. Three different criteria were
utilized to test and verify wind resource data before subsequent
evaluations were carried out: 1) measured parameter checks, 2)
data recovery rate, and 3) sufficient comparison checks. The
measured parameter checks and data recovery rate determined if
the model passed the data verification tests. The sufficient com-
parison criteria compares the wind analysis results to those pro-
duced with Windographer©, a commercially available software.
The availability and temperature criteria ensured that the wind
turbine was both commercially available and could operate in the
Alaska environment. The capacity factors of the selected wind
turbines were then compared with known historical wind project
capacity factor ranges and used to generate the cost per installed
wind capacity and levelized cost of energy (LCOE) estimates. Based
on the capacity factor, cost per installed capacity, and LCOE esti-
mates, the best suitable wind turbine was selected. Finally, the
convolution between the excess energy with the selected wind
turbine and different dispatchable loads was carried out to evaluate
feasibility and usefulness.

2.1. Data collection and processing

Wind speed data were collected from the community's local
airport meteorological station. Hourly meteorological data from
January 1, 2015 to December 31, 2019 at a 10-m height were ob-
tained through the Automated Surface Observing System (ASOS)
Network from Iowa State University (Iowa EnvironmentalMesonet)
[19,20]. A sample year of wind speed data is shown in Fig. 2. The
annual mean wind speed was about 4 m/s with a wind power
density of about 110 W/m2.

The data verification guidelines of the National Renewable En-
ergy Laboratory (NREL) and the International Renewable Energy
Agency (IRENA) were followed to validate the data from the
meteorological station [21,22]. The data were down sampled into
hourly time steps, then validated using general system complete-
ness checks and measured parameter checks, treatment of suspect
and missing data, and data recovery rates [22]. Measured param-
eter checks consisted of range tests (allowable upper and lower
limits) and trend tests (change over time). The dataset exhibited
some missing values, though the data recovery percentage still
exceeded 90% as a criterion for continued analysis [21,22].

Community electric load demand profiles were obtained from
the local utility. The files were combined into a single year load
demand profile by averaging the loads by date and time annually
then aggregated to hourly temporal resolution. The community's
annual energy demand was 297.6 MWh with an average annual
load demand of 40.3 kW.

2.2. Wind resource assessment

The wind resource assessment was carried out using standard
wind assessment methods and was programmed in Python to
analyze wind data by determining the annual mean wind speed,
standard deviation, Weibull distribution, histogram, wind power
density, and wind rose [22e27]. Please see Appendix A for equa-
tions used for the wind resource assessment calculations. With



Fig. 1. A flow diagram of the analysis methods and criteria, including wind resource assessment, wind turbine selection, cost analysis, and dispatchability analysis processes.
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Windographer© software, the results of the programmed assess-
ment process were validated. Table 1 displays the comparison of
data recovery (DR), annual mean wind speed, minimum and
maximum wind speed, wind speed standard deviation, and wind
power density using both Windographer© and the programmed
assessment process. The validation process was conducted with
raw data without excluding error values. Another assessment was
conductedwith the exclusion of errors, recurring zero values, and is
also presented in Table 1.

The results in Table 1 demonstrate that the Python wind
resource assessment model and Windographer© produced similar
results. As shown in Fig. 3, this agreement was also true for wind
rose generation. The wind roses illustrate that the prevailing wind
directions are northeast and south, with northeast being dominant.
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2.3. Wind turbine power assessment

Twenty-four wind turbine candidates with capacities between
50 kW and 900 kW were selected based on case studies by the
Alaska Energy Authority (AEA), V3 Energy LLC reports, and others
(see Appendix B) [28e31]. Wind turbines were evaluated for their
commercial availability and their operating suitability in an envi-
ronment where temperatures can range from �50 �C to 35 �C. In-
dividual wind turbine specifications were obtained from
manufacturer websites or the wind-turbine-model database
[32e34]. Wind turbine power curves as a function of wind speed
were interpolated into power values at 1 m/s increments. Then,
0.25 m/s-increment power curves were generated using poly-
nomial fits, with R2 values for the fit between the model and
manufacturer curves of >0.999.



Fig. 2. Average hourly wind speed (m/s) January 1 to December 31 with an annual mean wind speed of about 4.0 m/s. Wind speeds were generally higher in winter and spring.

Table 1
Comparison of Windographer and programmed techniques.

Windographer Python Model w/o exclusion Python Model w/exclusion

Wind Speed (m/s)

Height (m) 10 10 10
Possible Data Points 43800 43800 43800
Recovered Data Points 40911 40911 40265
Data Recovery (DR) 93.40% 93.40% 91.29%
Annual Mean 4.002 4.002 4.006
Minimum 0 0 0
Maximum 24.179 24.179 24.179
Std. Dev 2.77 2.77 2.74

Weibull Distribution Parameters
Scale factor (A) (m/s) 4.423 4.402 4.473
Shape factor (k) 1.471 1.491 1.535

Wind Power Density
Annual Wind Power Density (W/m^2) 113.00 109.61 109.12

Fig. 3. Wind rose comparison of Windographer (left) and programmed techniques using Python (right) with 1 m/s increment increase.
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Hourlywindpowerproductionwasgeneratedusingwind speeds
extrapolated at the hub height of a selected wind turbine using the
power law. It should be noted that the wind power law only applies
toflat terrain; in complex terrain, on-sitemeasurements areneeded.
While most rural Alaska communities are surrounded by complex
terrain, it was assumed that the community terrain was flat (wood
1475
plain) with a roughness coefficient of 0.24 m [22].

2.4. Capacity factor

The capacity factor is the ratio of the actual wind energy
absorbed by the grid and the wind energy that could be produced if
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operating at rated capacity throughout a given period [31]. The time
series capacity factor was calculated based on the annual hourly
wind power production and load demand, taking into consider-
ation the technical minimum load of the generators (30%) and
maximum instantaneous wind supply, assumed to be 50% of the
instantaneous load demand, given no energy storage or dis-
patchable loads to maintain grid stability [31,35]. The community's
diesel powerhouse consists of three 67 kW generators, and thus
each generator must operate at a minimum of 20 kW. Any unab-
sorbed wind generation or diesel generation above the community
load profile is considered excess generation.

The results from the time series capacity factor calculation were
compared with the results from the probabilistic methods, which
considered the probability of occurrence for every possible scenario
in the convolution of the wind power production scenarios (N) and
load demand scenarios (M) [35]. The ranges of both probabilities
were generated between the Minimum (Pmin) and Maximum (Pmax)
wind power in each hour and hourly load demand values with
power increments (kW) calculated using Equation (1). The different
wind power production scenarios (Pwj) are the aggregate of the
energy increments generated with range N: The probability of
occurrence of the wind power production is (gðPWjÞ, j ¼ 1, N),
corresponding to the probability distribution of the scenarios in the
range N calculated using Equation (1) [35].

Power Increment

¼ Pmax � Pmin

Number of probabilities under considerationðM or NÞ
Eq. 1

The load demand (PLi) was considered in a hourly annual
duration (hi), and the corresponding probability of occurrence is
(f ðPLiÞ ¼ hi=8760; i ¼ 1; M). The convolution of the wind power
production probability (gðPWjÞ) and load demand probability
((f ðPLiÞ) results in a two-dimensional matrix MxN using Equation
(2) [35]. The values in this matrix correspond to the probability of
Fig. 4. Convolution of probability of load demand (left) and probability of wind power pr
possibility of occurrence of each scenario from both probabilities. The possibility of occurre
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occurrence of the two scenarios at the same time, as shown in
Fig. 4.

PijðPLi;PWjÞ¼ f ðPLiÞ gðPWjÞ; fi¼1; M; j¼1; Ng Eq. 2

A key assumption was that the maximum wind absorption ca-
pacity was based on the diesel generator minimum loading in all
scenarios until the electric demand is met or exceeds the diesel
generator capacity. The maximum allowable wind absorption was
calculated based on the technical minimum of operating the diesel
generators and the community load demand in each scenario; this
was compared with wind power production scenarios to ensure no
generation exceeded the maximum absorption limit. The scenarios
were summed to determine the total wind energy absorbed and
total excess energy (available for use in dispatchable loads) over the
course of a year.

This probabilistic method is more precise in estimating the total
absorption of wind power generation compared to the time series
method; thus, this is a more accurate method of calculating ca-
pacity factors. This increase in precision comes about because the
probabilistic method considers the probability of occurrences of
each scenario whereas the time series method involves a direct
hourly comparison of the power production and load demand. The
accuracy of the time series method can be improved with the uti-
lization of power curves that have smaller wind speed increments.
For example, as the power curve wind speed increment decreases
from 1 m/s to 0.25 m/s, the production becomes more accurate. If
this increment is reduced further, the total wind power generation
will be closer to that of the probability method. Although there is a
mismatch, the percent difference is minimal and therefore can be
considered adequate.

2.5. Wind turbine economics in Alaska

The capacity costs ($/kW) of installing the selected wind tur-
bines, and resulting levelized cost of energy (LCOE, $/kWh), were
determined based on data from 103 wind projects in Alaska with a
oduction (bottom) plotted as histograms. Each point in the scatter plot illustrates the
nce is used to calculate the wind power that can be absorbed by the power grid.
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capacity range of 50e5000 kW between 2008 and 2016 [36]. The
LCOE was calculated with the assumption of $0.036/kWh for yearly
operation and maintenance costs with an increasing inflation rate
of 2%, an interest rate of 5%, and a 20-year lifetime [36]. For this
study's purpose, the LCOE for each installed capacity was extrap-
olated for a 5e10% capacity factor, from the 20e40% capacity factor
range, using a second-order polynomial curve fit of existing data
and resulting R2 values of 1. The cost per installed capacity and
LCOE tables values used in this cost analysis can be found in
Appendix C.

2.6. Dispatchability

Dispatchable loads are defined as components of the commu-
nity electric demand profile that can be controlled to turn on and
off or flexibly operate along a spectrum of power demands. In this
analysis, these loads are assumed to operate based on historical
data of their operation to understand how much excess generation
they can absorb with no controls as a conservative case. Then each
of the loads can be analyzed for the best match with wind gener-
ation to inform communities on which may be most suitable for
installation and future control in practice. This determination was
conducted by convoluting the excess power production profiles
with a dispatchable load's demand profile over a year to determine
the total excess energy that could be absorbed. This convolution
process was the same as that described in Section 2.4. For each hour
of the year, the ratio of excess energy to the demand of the four
dispatchable loads was also calculated as a metric to evaluate the
best match between wind turbines and dispatchable loads.
Fig. 5. Average seasonal load profiles of one unit of each dispatchable load. Note that the Wa
each season.
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The analysis first considered adding one type of dispatchable
load (Sec. 3.3.1) and then a combination of dispatchable loads (Sec.
3.3.2) at every housing unit. When a type of dispatchable load was
chosen, its load profile (based on typical historical operation, as
shown in Fig. 5) was convoluted with the excess power production
profile. The purpose of this analysis was to determine howmuch of
the dispatchable load demandwould be met bywind. In reality, the
balance of dispatchable load demand would be met by diesel
generation to ensure that the loads satisfy FEW security (such that
plants do not die in a container farm if thewind stops, for example).
However, diesel generation was not modeled in this analysis.

The integration of dispatchable loads was first considered in
aggregation over a year (Sec 3.3.1 and Sec 3.3.2), and then modeled
on an hourly basis (Sec. 3.3.3) for finer time-scale analysis of excess
energy utilization. The objective of this approach was to provide a
simple tool for recommending a type of dispatchable load for
consideration by the community, assuming no alteration or control
of its typical demand profile. Further optimization of the dis-
patchable load operation profile relative to excess wind energy was
out of the scope of this work and has been analyzed previously in
the literature with more computationally-intensive models [37].

This study considered the addition of four types of dispatchable
loads that simultaneously benefit food and water security. The four
dispatchable electric loads included a CropBox© container farm, a
Lifewater™ modular sewage treatment unit, a household Water
Reuse system, and a standard residential electric water heater.
These loads were chosen based on preferences of the community.
The power capacities of each dispatchable load are shown in
Table 2.
ter Reuse and Lifewater™ demand profiles are modeled based on the same behavior in



Table 2
Dispatchable load power characteristics for four dispatchable systems.

CropBox© Lifewater™ Water Reuse Water Heater

Average Power (kW) 6.6 0.11 0.2 0.54
Peak Power (kW) 8 0.2 1 1
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A container farm, such as a CropBox© system, allows for
growing herbs and greens in an indoor hydroponic system year-
round to supplement food imports and subsistence hunting and
gathering. Prior and current analysis using data from a CropBox© in
Whitehorse, Yukon, Canada has demonstrated that operating
lighting, ventilation, and dehumidification as dispatchable loads
can integrate more renewable energy [37].

A modular wastewater treatment system produced by Life-
water™ is used bymany households in the Arctic to treat and safely
discharge blackwater from toilets [38]. This system can improve
community health and water security by reducing dependence on
honey buckets and waste lagoons, which are susceptible to
breaches. The water treatment power demand was analyzed on a
flexible schedule, by turning on pumps, aerators, and water disin-
fection, coincident with wind generation. Power use data for each
of these components has been modeled for this application [39].

A Water Reuse system has been developed specifically for the
Arctic, which enables greywater from sinks, showers, and laundry
to be reused within a household, thus reducing the need to haul
water from the community washeteria [40]. The system uses
pumps to treat water through various filters, reverse osmosis units,
and ultraviolet and ozone disinfection systems, which can be
operated flexibly. Power use data has been collected for each of
these components [41].

Finally, electric water heating was also chosen as a dispatchable
load. The water heater operates when excess energy is abundant
and deactivates when energy output is low, such that water tem-
perature remains within an appropriate range (~49e60 �C or
~120e140 �F). A standard 190 L (50 gallon) residential electric
water heater was chosen and modeled for typical patterns of en-
ergy use based on data from the Electric Power Research Institute
[42].

The average seasonal and diurnal behaviors of typical load op-
erations for one unit of the four dispatchable loads are shown in
Fig. 5. Each season is three months long, defined by fall (September
through November), winter (December through February), spring
(March through May), and summer (June through August). While
these load profiles would deviate in practice, given that they would
be dispatched to accommodate a specific situation, this analysis
was based on how the modular loads operate in the status quo, as a
conservative case.

The CropBox© has the highest load and is relatively consistent
Fig. 6. Block diagram of electric network topology demonstrating generation from diesel and
Farm, Lifewater, Water Heaters, Water Reuse [WR] system). Dispatchable loads are first uti
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on a diurnal basis, aside from a few hours in which lighting is
turned off. The water-based loads all have various peaks in demand
when treating water, although the Lifewater™ system has the
lowest load.

Since each of the 25 households would need Lifewater™, Water
Reuse, and water heater systems, the analysis of each dispatchable
load included 25 units. However, only one CropBox© would be
installed, as it is a large load best operated at a community scale, so
the analysis included only one unit. Also, though most or all
housing units might already have water heaters installed, for the
purpose of this dispatchability study the water heater was evalu-
ated as if none were existing. Furthermore, combinations of
different dispatchable load types were considered. It should also be
noted that the costs of the new devices were not considered in this
analysis. A block diagram of the electric network topology to show
how the energy is being sourced and distributed to the system
loads is displayed in Fig. 6.

3. Results and discussion

The capacity factor and resulting economics of each wind tur-
bine are presented in Sections 3.1 and 3.2, respectively, and results
of dispatchable load integration metrics are presented in Section
3.3.

3.1. Capacity factor

The capacity factors from operating each of the 24 selected wind
turbines for two test casesd50% (assuming no dispatchable loads)
and 100% (including dispatchable loads) instantaneous wind sup-
plydwere analyzed. A comparison of the capacity factors demon-
strated minimal differences between 50% and 100% instantaneous
wind supply scenarios (see Appendix D). This was due to the
relatively high technical minimum load of the diesel generator that
is needed to be maintained and the curtailment of the wind energy.
The 100% wind penetration case was used for the remaining cal-
culations since dispatchable loads were also evaluated for the
community.

From the 24wind turbines initially considered, six were selected
for the community based on a criteria range of 50e5000 kW and
capacity factor range of 5e40% [36]. For the selected turbinesd-
which included the Entegrity (65 kW), Wind Energy Solution
(70 kW, 80 kW, and 100 kW), Vestas V27 (225 kW), and EWT
DirectWind 52 (250 kW)dthe capacity factors, wind energy ab-
sorption rate, wind energy rejection rate, and percentage of load
demand covered by wind were calculated, as shown in Fig. 7. The
wind energy absorption rate is the percentage of wind energy that
can be absorbed by the power grid. The wind energy rejection rate
is the percentage of energy rejected by the grid.
wind to meet the community load, then meeting dispatchable load demand (Container
lized with any excess energy beyond community load.



Fig. 7. Capacity factors, wind energy absorption rate, wind energy rejection rate, and wind supply rate based on the convolution of the hourly excess wind energy and load demand,
not including dispatchable loads. The wind turbines selected have the capacity within the criteria range of 50e5000 kW and capacity factor range of 5e40%. Larger wind turbines
were able to meet a higher percentage of the community's load but with diminishing returns above 100 kW.
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The capacity factor ranged from 6.1% to 13.3% depending on the
wind turbine. The absorption rate of the total generated wind en-
ergy decreased as wind turbine capacity increased. Wind turbines
with rated power greater than 2.5 times of the average community
load showed diminishing returns because of the significant
decrease in capacity factor.

3.2. Economics

The LCOE and capacity cost of each turbine, based on their
resulting capacity factors, are displayed in Fig. 8. These LCOE cal-
culations only account for wind generation to meet the community
load and do not account for any excess energy used to power dis-
patchable loads. Thus, this calculation is conservative given that
including dispatchable loads would decrease LCOE by usingmore of
the generation capacity of the wind turbines. The cost per installed
wind capacity varied from about $27,100/kW to $16,600/kW with
increasing capacity of the wind turbine, as shown in Fig. 8. In this
Fig. 8. Levelized cost of electricity (LCOE) and cost pe
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figure, there was a decreasing trend with increasing capacity as
economies of scale were realized.

Based on the economic calculations, the 100 kW Wind Energy
Solution 32 wind turbine would be best suited for the community
as it has the highest capacity factor of about 16.7% and a relatively
low cost per installed capacity of about $20,700/kW. The turbine
has a corresponding LCOE of ~$1.15/kWh. This calculated LCOE of
wind energy is higher than the conventional LCOE of diesel electric
generation, which is $0.92/kWh and $0.62/kWh with a subsidy
[43].

However, with the inclusion of the excess wind energy absorbed
by dispatchable loads, there is an increase in capacity factor and
decrease in LCOE of the wind turbine. The increase in capacity
factor results from utilization of otherwise wasted energy from the
wind turbines by the dispatchable loads. The improvement in ca-
pacity factor and LCOE is shown in Table 3 for the case of choosing
one type of dispatchable load to install in the community.
r installed capacity of the wind turbines selected.



Table 3
Levelized Cost of Electricity of a 100 kW Wind Energy Solution 32 wind turbine meeting demand of the community with excess wind energy utilized to power each type of
dispatchable load. Water heaters provide the greatest utilization of excess wind energy in this case.

CropBox© Lifewater™ Water Heater Water Reuse

Wind Turbine Capacity Factor 21.0% 18.3% 24.5% 19.2%
Wind Turbine LCOE ($/kWh) 0.96 1.07 0.85 0.84

Table 4
Annual dispatchable load demand of each load with the percentage of the total demand met by the excess energy generated by each wind turbine.

CropBox© Lifewater™ Water Heater Water Reuse

Number of units 1 25 25 25
Annual Dispatched Load Demand (MWh) 58 23 120 32
Entegrity (65 kW) 9% 14% 5% 12%
Wind Energy Solution (70 kW) 21% 25% 15% 24%
Wind Energy Solution (80 kW) 15% 21% 10% 19%
Wind Energy Solution 32 (100 kW) 65% 63% 57% 67%
Vestas V27 (225 kW) 76% 75% 69% 79%
EWT DirectWind 52 (250 kW) 84% 80% 78% 86%
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3.3. Dispatchable loads

In this section, the effect of incorporating dispatchable loads to
absorb excess energy is discussed. First, the electric demand of each
dispatchable load (discussed in Sec. 2.6), is modeled to operate on
the excess generation of each wind turbine on an annual basis,
using the convolution method and scenarios of dispatchable load
combinations. Then, the integration of dispatchable loads with
excess wind energy on an hourly basis for finer temporal-scale
analysis is presented.
3.3.1. Annual integration of each dispatchable load
The dispatchable load demand was input into the convolutional

process to determine the best fit between dispatchable loads and
wind turbines to allow for the maximum percentage of wind
penetration. The metrics used to evaluate this recommendation
were the total annual amount of excess wind energy used to power
each dispatchable load, expressed as total energy in kWh (named
“dispatched load absorbed”) and as a percentage of the total dis-
patchable load demand (“dispatched load percentage”). For
example, an EWT DirectWind 52 (250 kW) turbine would generate
about 938 MWh of excess energy with no dispatchable loads;
however, with an installation of 25 water heaters, 93 MWh of that
excess energy would be absorbed, accounting for 78% of the annual
load demand of the water heaters. This result does not consider
control of the water heater consumption profile. Higher dispatched
load percentages mean that the dispatchable load demand can be
met predominantly by what would otherwise be excess wind en-
ergy. The results of evaluating the simulations for each turbine and
load, given the above metrics, are summarized as a total value for
an entire year, based on the results of the convolutional process.

Table 4 displays the number of units of each dispatchable load,
the annual dispatched load demand, and the percentage of the total
demand that would be met by excess energy from each turbine.
Higher wind capacities allow for higher amounts of the dis-
patchable load demand to be met, as expected. For turbines with
capacities less than 100 kW, the Lifewater™ has the highest per-
centage of its load met; for turbines with capacities of 100 kW or
more, the Water Reuse system has the highest percentage of its
load met.

The total annual amount of load met in MWh is presented in
Fig. 9 for each of the dispatchable load and wind turbine combi-
nations. Of all dispatchable loads, water heaters absorb the most
total excess energy, followed by the CropBox©. Both loads have a
relatively constant baseload in their status quo demand profile, and
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thus have a high likelihood of absorbing wind energy when it is
available. Water heating has especially been noted for its high po-
tential for demand flexibility as a dispatchable load and thus may
be able to shift its profile to align more closely with renewable
generation, if controlled in an optimal manner in real deployment
[44]. The Lifewater™ system does have awater heating component,
although the component is not included in this analysis given that
the heating component load data have not been collected. In
practice, the Lifewater™ system may resemble some of the same
characteristic results as water heaters.

3.3.2. Annual integration of combinations of dispatchable loads
The evaluation of combinations of dispatchable load types was

also investigated. These combinations were chosen using any
reasonable number or type of dispatchable loads, as long as the
total annual dispatchable load demandwas less than or equal to the
available excess energy. These results are summarized over an
entire year per the convolutional process, as shown in Fig. 10.

Although community preferences may dictate different combi-
nations of loads, the scenarios in Fig. 10 are an example of several
functional options. In general, the annual dispatched percentage
increased significantly with an increase in wind capacity, as can be
seen in the difference between the 225 kW Vestas V27 and 250 kW
EWT Direct Wind 52. With an increase in wind turbine capacity of
25 kW and with the same number of dispatchable loads, there is
about a 12% increase in annual dispatched percentage.

3.3.3. Diurnal integration of each dispatchable load
As opposed to considering the dispatchable load demand as an

aggregate amount of energy over a year, the coincidence of the
demand profile with excess wind energy supply can be analyzed
over each hour. In other words, how does dispatchable load de-
mand alignwith excess wind generation on an hourly basis over an
average day? All turbines were analyzed; however, given similar
results among turbines, only the 100 kW Wind Energy Solution 32
turbine is presented. The generation per turbine at an hourly res-
olution is shown for an average day in each season in Fig. 11.

The output of excess wind energy from the turbine is highest at
night and in the spring. The ratio of this excess wind energy
compared to the demand of each dispatchable load, or dispatched
percentage, was calculated for each hour of the year and averaged
to display a typical day in each season, as shown in Fig. 12.

On average, there is sufficient excess wind to power the dis-
patchable loads, as the dispatched percentage (ratio of excess wind
to dispatchable load) is greater than 100%. The Water Reuse and



Fig. 9. Annual dispatchable load demand absorbed by excess wind energy output (MWh) demand of simulating 25 Lifewater™ units, 25 Water Reuse systems, 25 water heaters, or 1
CropBox© paired with each wind turbine considered. From the results in this figure, the water heater is best able to absorb excess energy.

Fig. 10. Dispatchable load units and annual dispatched load percentage for combinations of dispatchable loads with increasing installed capacity.

C. Her, D.J. Sambor, E. Whitney et al. Renewable Energy 179 (2021) 1472e1486
Lifewater™ systems have the highest ratio, given their low power
usage during most of the day aside from peak power events. Across
all loads, excess wind has the most difficult time meeting dis-
patchable load demand during midday in the summer.

In Fig. 12, averages over the course of each hour of the day are
shown for each dispatchable load as one average day per season.
However, when analyzing each hour of an entire year, not averaged
by season, there are several hours in which excess wind cannot
meet dispatchable load demand, as shown in Table 5. In practice,
the dispatchable load profiles would be tailored to turn off in hours
when no wind is available. These results are intentionally conser-
vative, only integrating the loads using typical demand profiles (no
load control). The Lifewater™ systems have the fewest hours in
which load is not met, partly due to the lower system capacity
(~500 W).

While Fig. 12 suggests there is enough excess wind power to
meet demand on average, an hourly analysis of real (not averaged)
data demonstrates there is frequently an insufficient amount of
excess wind energy. The Lifewater™ system is best suited for
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absorbing excess power from the 100 kWWind Energy Solution 32
wind turbine, which may be because it has one of the most
consistent and lowest load profiles. However, given the Lifewater™
system has the lowest overall electricity demand, it used the least
amount of excess wind energy available compared to the other
dispatchable loads.

If dispatchable load types and their demand profiles were
optimized, the total demand profile met would most likely be
higher in magnitude with less operation during times of low wind
energy output. For example, the water heater has a relatively high
power demand when heating water, with substantial energy use
over a year and considerable potential for energy storage. Thus, if
the water heater operations were optimized, it could store suffi-
cient excess wind energy in the form of heated water to bridge
periods of low wind generation, with minimal effect on consumer
demand. Although the percentage of total annual dispatchable load
demand met by excess wind energy is lower for water heaters than
other loads in this study, future study may demonstrate they can
absorb more excess energy when optimized.



Fig. 11. Excess wind power from the 100 kW Wind Energy Solution 32 wind turbine averaged diurnally for each season. Wind generation is lowest in the summer and highest
during spring nights and midday winter times.

Fig. 12. Hourly and seasonal percent of each dispatchable load met by excess wind power generation from the 100 kW Wind Energy Solution 32 wind turbine.

Table 5
Capability of excess wind power or energy? Generated by the 100 kW Wind Energy Solution 32 wind turbine to meet the demand of dispatchable loads.

Dispatchable Load CropBox© Lifewater™ Water Reuse Water Heater

Percentage of year in which excess wind meets dispatchable load demand 58% 64% 61% 51%
Percentage of total annual dispatchable load demand met by excess wind 63% 65% 51% 55%
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4. Conclusion

The goal of this study was to develop an alternative wind
resource assessment method using a rural Arctic community's
airport meteorological data and to determine the best wind turbine
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for installation based on total generation and ability to match
excess generation with specific dispatchable loads. Given the
highest capacity factor of 16.7% and LCOE of $1.15/kWh, a 100 kW
Wind Energy Solution 32 wind turbine was determined to be best
suited for the community.
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Furthermore, several types of dispatchable loadsda CropBox©,
Lifewater™ system, Water Reuse system, and water heaterdwere
analyzed to integrate with coincident excess energy generation,
while also providing FEW security benefits to the community. The
convolution of the hourly excess energy from wind turbine gener-
ation and hourly load demand of each dispatchable load resulted in
different absorption rate scenarios; ultimately, the Lifewater™
system provided the optimal match based on the ratio of its de-
mand to excess wind energy available. Based on integrationwith all
potential wind turbines, the Water Reuse system offered the
highest annual dispatched percentage, at about 86%, with the
largest 250 kW EWT DirectWind 52 (250 kW) wind turbine.

Excesswind energywasmost inadequate atmeeting dispatchable
load demand during midday and summertime periods. While calcu-
lationof annual dispatchability percentages showed that dispatchable
loads can handle the intermittency of the wind resources, it must be
taken into consideration that this study used 1-h resolution datasets,
which evened out fluctuations that occur at higher resolutions. One
consequence of this approach is that the excess energy would not be
evenly distributed over an hour and thusmight not be able to be used
ascalculated.However, there is sufficientflexibility inthedispatchable
load capacity to be able to accommodate fluctuations due to inter-
mittency of excess wind power generation.

Nevertheless, in future work, the capacity factor and cost ana-
lyses can be improved by the inclusion of the actual operating
schedule of each diesel generator instead of using the average
generator capacity. Inclusion of the actual run schedule will greatly
improve the capacity factor since the technical minimum is more
accurate and lower, which in turn will decrease the LCOE. Dis-
patchable load scenarios can be refined by collaborating with the
communities to understand their preferences of wind turbines,
dispatchable load choices, and number of preferred and useable
dispatchable load units. Furthermore, the dispatchable load inte-
gration model should include modeling optimal control of dis-
patchable loads andat higher temporal resolution.Morework is also
needed to understand the impact of integrating dispatchable loads
into the grid in practice along with the scheduling of those loads.

This research forms a foundation for the use of alternative wind
resource assessment methods, wind turbine selection procedures,
and potential dispatchable load installations in rural Arctic com-
munities. Ultimately, co-deployment of wind turbines and dis-
patchable loads could improve the community's food, energy, and
water security while reducing their reliance on fossil fuels.
Although this study focused on a rural Alaska community, the tool
developed can be utilized to assess any rural community with
similar conditions throughout the developing world. The climates
will vary but the tool can be set up for different wind turbines and
input data. The issues of food, energy, and water security in off-grid
communities are not only applicable in Alaska; similar conditions
exist throughout the developing world.
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Appendix A. Wind assessment equations are as follows

The data were analyzed to determine the wind resource char-
acteristics in each community and provide a useful summary of the
validated wind resource data. This summary included the mean
wind speed, annual mean wind speed, standard deviation, turbu-
lence intensity, Weibull distribution, histogram, wind power den-
sity, and wind rose.

The mean wind speed (Vave) is a simple average of all the values
throughout the period of interest:

Vave ¼ 1
Nvalid

XNvalid

i¼1

Vi Eq. A.1

where Vi is the wind speed in the time series and Nvalid is the
number of valid data points. This means wind speed can be a
misleading indicator of the wind resource as it may not reflect a full
seasonal cycle of wind variations and could be biased from mea-
surement periods less than a year, large gaps in the data log, and
non-integer numbers of years recorded. This bias could mean that
some months may be favored or represented more often [22].

The annualmeanwind speed (Vanave (m/s)) is calculated by taking
the mean of each calendar month's average wind speed:

Vanave ¼
1
12

X12
i¼1

Vmave;i Eq. A.2

where Vmave ;i is the monthly mean wind speed. This method helps
reduce the data bias and is a more accurate representation of the
wind resource, but data of at least 12 months is needed [22].

To calculate the wind power density from the wind resource, it
is necessary to evaluate the wind speed frequency distribution. The
speed frequency distribution is the number of occurrences of a
wind speedwithin a binwidth, typically 0.5m/s or 1m/s [22]. Here,
we use 1 m/s and a Weibull distribution. The Weibull distribution
has been found to be a best-fit approximation of the speed fre-
quency distribution for wind assessment [23,24]. The Weibull dis-
tribution function considers the specific wind velocity (V(m/s)),
shape factor (k), and scale factor (c(m/s)) [25]:

f ðVÞ¼ k
c
*ðV

c
Þk�1*e�ðvcÞk Eq. A.3

The Weibull parameters can be calculated as follows:
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k¼ð s

Vanave

Þ�1:086 Eq. A.4

c¼ Vanave

Gð1þ 1
kÞ

¼ 1:1*Vanave Eq. A.5

where s (m/s) is the annual standard deviation of the wind speed,
Vanave (m/s) is the annual average wind velocity, and G is the gamma
function given by:

GðxÞ¼
ð∞

0

tx�1e�tdt Eq. A.6

The heights of the wind speeds measured from the meteoro-
logical stations are 10 m for all communities in this study. The most
common vertical wind profile extrapolation method is the power-
law [23,26]:

Vz2 ¼Vz1*ð
z2
z1

Þm Eq. A.7

where m is the power-law exponent of the wind speed and is also
known as the roughness or friction coefficient, which is highly
dependent on the roughness of the terrain. A table of m values is
shown in Table A1 [23,27].
Table A.1
Roughness coefficient for different terrain types

Roughness Coefficient (m) Terrain Type

0.13 Water Area
0.16 Shore
0.20 Plain
0.24 Wood Plain
0.30 City

Table B.1
Overall, 24 wind turbines were considered based on already installed and test cases in A

Performance Diameter Tower height Rated
Power

Annual Power production
4 m/s

Eocycle (EO25) 16 m 23.8 m 25 Kw 40 MWh
Energie PGE 11 m 18 m 35 kW 19.527 MWh
Entegrity 15 m 25 m 65 kW 87 MWh
Wind Energy Solution 20.3 m 15, 18, 24,

30 m
50 Kw 124 MWh

Wind Energy Solution 17.9 m 18, 24, 30,
39 m

80 kW 74 MWh

Aeolos H 24.5 m 30 m 100 kW 100 MWh
Northern Power

Systems
20.9 m 35.7 m 100 kW 77 MWh

Wind Energy Solution
32

32 m 30, 39, 48 m 100 kW 207 MWh

XANT M-21 21 m 23, 38 m 100 kW e

XANT M-24 24 m 23, 38 m 100 kW e

Vestas V27 27 m 110 m 225 kW e

EWT DirectWind 52 52 m 35, 40 and
50 m

250 kW .

Wind Energy Solution 30 m 30, 39, 48 m 250 kW 207 MWh
EWT DirectWind 52 52 m 35, 40 and

50 m
500 kW 1750 MWh

EWT DirectWind 54 54 m 40, 50 and
75 m

500 kW 1550 MWh

EWT DirectWind 61 61 m 46 and 69 m 500 kW 1550 MWh
Vestas V39 39 m 40.5 and 53 m 500 kW e

EWT DirectWind 61 61 m 46 and 69 m 750 kW 1550 MWh
EWT DirectWind 52 52 m 35, 40 and

50 m
900 kW 1750 MWh

EWT DirectWind 54 54 m 40, 50 and
75 m

900 kW 1550 MWh

EWT DirectWind 61 61 m 46 and 69 m 900 kW 1550 MWh
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The power of the wind can be calculated using the following
equation, where r (kg/m2) is the air density and A (m2) is the rotor
swept area [25]:

PðVÞ¼1
2
*r*A*V3 Eq. A.8

The air density is temperature-dependent and can be calculated
using air pressure (converted to N/m2 ¼ 1 Pa where standard at-
mospheric pressure is 101,325 Pa absolute) and air temperature
(converted to Kelvin, or K) readings from the meteorological sta-
tion. The average air density of a specific location can be calculated
as:

r¼ p
R*T

Eq. A.9

where p (N/m2) is the air pressure, T(K) is the air temperature, and
R is the universal gas constant (about 287 J/kg*K).

From the Weibull distribution calculated in Equation (A.3), the
wind power density (P) can be calculated using Equation (A.10):

P¼1
2
*r*V3*f ðprobÞ Eq. A.10

f ðprobÞ¼ f ðVÞ*0:5 Eq. A.11

where f ðVÞ is the Weibull probability density function with a bin
width of 1 m/s.
Appendix B. List of wind turbines considered
laska [28e31].

@">@ Cut-in wind
speed

Rated wind
speed

Cut-out wind
speed

Operation
temperature

2.75 m/s 11 m/s 20 m/s
4.8 m/s 14 m/s 25 m/s e

4.6 m/s 17 m/s 22.4 m/s �40C
<3 m/s 9.5 m/s 25 m/s �20 �C up to þ40 �C

<3 m/s 13 m/s 25 m/s �20 �C up to þ40 �C

2.5 m/s 10 m/s None �20 �C up to þ50 �C
3.5 m/s 15.0 m/s 25 m/s �40 �C up to þ50 �C

2 m/s 9 m/s 16 m/s �20 �C up to þ40 �C

3.5 m/s 11 m/s 20 m/s e

3 m/s 10 m/s 20 m/s e

3 m/s 15 m/s 25 m/s e

3 m/s 10 m/s 25 m/s e

<3 m/s 13 m/s 25 m/s �20 �C up to þ40 �C
3 m/s 10 m/s 25 m/s e

2.5 m/s 10 m/s 25 m/s e

2.5 m/s 11.5 m/s 25 m/s e

4 m/s 15 m/s 25 m/s �30C to þ40C
2.5 m/s 11.5 m/s 25 m/s e

3 m/s 14 m/s 25 m/s e

2.5 m/s 14 m/s 25 m/s e

2.5 m/s 11.5 m/s 25 m/s e



C. Her, D.J. Sambor, E. Whitney et al. Renewable Energy 179 (2021) 1472e1486
Appendix C. Cost per installed capacity and LCOE tables and
values
Table C.1
Project costs and total cost per installed capacity [36].

Installed wind capacity (kW) Analysis and design (k$">$/kW) Hardware and transport (k$">$/kW) Balance of system (k$">$/kW) Total (k$">$/kW)

50 3.805 10.661 15.353 29.819
100 2.284 8.251 10.145 20.680
500 0.715 4.552 4.438 9.705
1000 0.439 3.523 3.357 7.319
2000 0.273 2.728 2.676 5.676
5000 0.148 1.945 2.143 4.236

Table C.2
Values of LCOE of different installed capacity and capacity factor [36].

Installed wind
capacity (kW)

5% average capacity factor
($">$/kWh)

10% average capacity factor
($">$/kWh)

20% average capacity factor
($">$/kWh)

30% average capacity factor
($">$/kWh)

40% average capacity factor
($">$/kWh)

50 2.50 2.08 1.41 0.96 0.73
100 1.79 1.48 0.99 0.67 0.52
200 1.25 1.04 0.71 0.49 0.38
500 0.87 0.72 0.49 0.34 0.27
1000 0.64 0.54 0.38 0.27 0.21
2000 0.48 0.41 0.30 0.22 0.17
5000 0.42 0.35 0.24 0.17 0.14
Appendix D. Capacity factors of operating 24 specific wind
turbines for two casesd50% (no dispatchable loads) and 100%
instantaneous wind supply
Fig. D.1. Comparison of the capacity factors of 50% and 100% instantaneous wind supply scenarios for the 24 wind turbines.
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