Example 4¶
PyPSA v.s PSS/E¶
This notebook demonstrates how to compare the PyPSA and PSS/E results.
pre compiled PSS/E data can be found in the database with the specifics found here.
if you can and have the license, feel free to run the PSSE simulation yourself
This example uses the RTS GMLC case system with wave energy converter farm. (74 buses)
In [1]:
Copied!
import wecgrid
example4 = wecgrid.Engine()
example4.case("./grid_models/IEEE_96_bus.raw")
example4.load(["pypsa"])
#example4.load(["pypsa", "psse"]) # Uncomment to load PSSE data
import wecgrid
example4 = wecgrid.Engine()
example4.case("./grid_models/IEEE_96_bus.raw")
example4.load(["pypsa"])
#example4.load(["pypsa", "psse"]) # Uncomment to load PSSE data
C:\Users\PDC-user\alexb\ACEP\WEC-Grid\src\wecgrid\modelers\power_system\base.py:388: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` tdf[col] = pd.NA
In [2]:
Copied!
example4.plot.sld()
example4.plot.sld()
SLD Data Summary: Buses: 73 Lines: 110 Generators: 33 Loads: 51
Apply the WEC-Farms¶
Lets create 3 WEC Farm. These Farms will have 10 RM3 devices each.
In [3]:
Copied!
###### RM3 Farm Connected to bus 123
example4.apply_wec(
farm_name = "RM3-FARM",
size = 10,
wec_sim_id = 1,
bus_location=326, # create a new bus for farm
connecting_bus = 123,
)
###### RM3 Farm Connected to bus 123
example4.apply_wec(
farm_name = "RM3-FARM",
size = 10,
wec_sim_id = 1,
bus_location=326, # create a new bus for farm
connecting_bus = 123,
)
WEC Farm added: RM3-FARM
Run Time Series Simulation with load curve¶
In [4]:
Copied!
example4.simulate()
example4.pypsa.report
example4.simulate()
example4.pypsa.report
PyPSA Simulating: 0%| | 0/288 [00:00<?, ?step/s]
PyPSA Simulating: 100%|██████████| 288/288 [04:14<00:00, 1.13step/s]
Out[4]:
SolveReport: ├─ Converged: Successful ├─ Simulation Time: 254.69 s ├─ Num Steps: 288 ├─ Case: IEEE 96 bus └─ Modeler: pypsa
In [5]:
Copied!
report = example4.pypsa.report.dataframe
report.plot('snapshot', ['iter_time', 'pf_solve_time', 'snapshot_time'], xlabel='time', ylabel='seconds')
report = example4.pypsa.report.dataframe
report.plot('snapshot', ['iter_time', 'pf_solve_time', 'snapshot_time'], xlabel='time', ylabel='seconds')
Out[5]:
<AxesSubplot:xlabel='time', ylabel='seconds'>
Pre-compiled PSSE simulation¶
we can pull the pre-compiled PSSE simulation to be able to compare with PyPSA
In [5]:
Copied!
example4.database.grid_sims()
example4.database.grid_sims()
Out[5]:
grid_sim_id | sim_name | case_name | psse | pypsa | sbase_mva | sim_start_time | sim_end_time | delta_time | notes | created_at | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | PSSE-RTS-GMLC: RM3 Farm | RTS GMLC Hooman | 1 | 0 | 100.0 | 2025-08-24T00:00:00 | 2025-08-24T23:55:00 | 300 | RTS-GMLC grid simulation using PSS/E. The simu... | 2025-08-24 20:19:19 |
1 | 2 | PSSE-RTS-GMLC | RTS GMLC Hooman | 1 | 0 | 100.0 | 2025-08-24T00:00:00 | 2025-08-24T23:55:00 | 300 | RTS-GMLC grid simulation using PSS/E. The simu... | 2025-08-24 19:10:55 |
In [6]:
Copied!
psse_grid = example4.database.pull_sim(grid_sim_id=1, software='psse')
psse_grid = example4.database.pull_sim(grid_sim_id=1, software='psse')
GridState reconstructed: RTS GMLC Hooman (PSSE) - 74 buses, 99 generators
Review Grid data¶
In [7]:
Copied!
psse_grid.bus_t
psse_grid.bus_t
Out[7]:
{'type': Bus_101 Bus_102 Bus_103 Bus_104 Bus_105 Bus_106 Bus_107 \ 2025-08-24 00:00:00 PV PV PV PV PQ PQ PV 2025-08-24 00:05:00 PV PV PV PV PQ PQ PV 2025-08-24 00:10:00 PV PV PV PV PQ PQ PV 2025-08-24 00:15:00 PV PV PV PV PQ PQ PV 2025-08-24 00:20:00 PV PV PV PV PQ PQ PV ... ... ... ... ... ... ... ... 2025-08-24 23:35:00 PV PV PV PV PQ PQ PV 2025-08-24 23:40:00 PV PV PV PV PQ PQ PV 2025-08-24 23:45:00 PV PV PV PV PQ PQ PV 2025-08-24 23:50:00 PV PV PV PV PQ PQ PV 2025-08-24 23:55:00 PV PV PV PV PQ PQ PV Bus_108 Bus_109 Bus_110 ... Bus_317 Bus_318 Bus_319 \ 2025-08-24 00:00:00 PQ PQ PQ ... PV PV PV 2025-08-24 00:05:00 PQ PQ PQ ... PV PV PV 2025-08-24 00:10:00 PQ PQ PQ ... PV PV PV 2025-08-24 00:15:00 PQ PQ PQ ... PV PV PV 2025-08-24 00:20:00 PQ PQ PQ ... PV PV PV ... ... ... ... ... ... ... ... 2025-08-24 23:35:00 PQ PQ PQ ... PV PV PV 2025-08-24 23:40:00 PQ PQ PQ ... PV PV PV 2025-08-24 23:45:00 PQ PQ PQ ... PV PV PV 2025-08-24 23:50:00 PQ PQ PQ ... PV PV PV 2025-08-24 23:55:00 PQ PQ PQ ... PV PV PV Bus_320 Bus_321 Bus_322 Bus_323 Bus_324 Bus_325 Bus_326 2025-08-24 00:00:00 PV PV PV PV PV PQ PV 2025-08-24 00:05:00 PV PV PV PV PV PQ PV 2025-08-24 00:10:00 PV PV PV PV PV PQ PV 2025-08-24 00:15:00 PV PV PV PV PV PQ PV 2025-08-24 00:20:00 PV PV PV PV PV PQ PV ... ... ... ... ... ... ... ... 2025-08-24 23:35:00 PV PV PV PV PV PQ PV 2025-08-24 23:40:00 PV PV PV PV PV PQ PV 2025-08-24 23:45:00 PV PV PV PV PV PQ PV 2025-08-24 23:50:00 PV PV PV PV PV PQ PV 2025-08-24 23:55:00 PV PV PV PV PV PQ PV [288 rows x 74 columns], 'p': Bus_101 Bus_102 Bus_103 Bus_104 Bus_105 Bus_106 \ 2025-08-24 00:00:00 0.6 0.71 -1.8 -0.74 -0.71 -1.36 2025-08-24 00:05:00 0.6 0.71 -1.8 -0.74 -0.71 -1.36 2025-08-24 00:10:00 0.6 0.71 -1.8 -0.74 -0.71 -1.36 2025-08-24 00:15:00 0.6 0.71 -1.8 -0.74 -0.71 -1.36 2025-08-24 00:20:00 0.6 0.71 -1.8 -0.74 -0.71 -1.36 ... ... ... ... ... ... ... 2025-08-24 23:35:00 0.6 0.71 -1.8 -0.74 -0.71 -1.36 2025-08-24 23:40:00 0.6 0.71 -1.8 -0.74 -0.71 -1.36 2025-08-24 23:45:00 0.6 0.71 -1.8 -0.74 -0.71 -1.36 2025-08-24 23:50:00 0.6 0.71 -1.8 -0.74 -0.71 -1.36 2025-08-24 23:55:00 0.6 0.71 -1.8 -0.74 -0.71 -1.36 Bus_107 Bus_108 Bus_109 Bus_110 ... Bus_317 \ 2025-08-24 00:00:00 2.3 -1.71 -1.75 -1.95 ... 0.0 2025-08-24 00:05:00 2.3 -1.71 -1.75 -1.95 ... 0.0 2025-08-24 00:10:00 2.3 -1.71 -1.75 -1.95 ... 0.0 2025-08-24 00:15:00 2.3 -1.71 -1.75 -1.95 ... 0.0 2025-08-24 00:20:00 2.3 -1.71 -1.75 -1.95 ... 0.0 ... ... ... ... ... ... ... 2025-08-24 23:35:00 2.3 -1.71 -1.75 -1.95 ... 0.0 2025-08-24 23:40:00 2.3 -1.71 -1.75 -1.95 ... 0.0 2025-08-24 23:45:00 2.3 -1.71 -1.75 -1.95 ... 0.0 2025-08-24 23:50:00 2.3 -1.71 -1.75 -1.95 ... 0.0 2025-08-24 23:55:00 2.3 -1.71 -1.75 -1.95 ... 0.0 Bus_318 Bus_319 Bus_320 Bus_321 Bus_322 Bus_323 \ 2025-08-24 00:00:00 0.22 -1.81 -1.28 3.55 3.1 7.1 2025-08-24 00:05:00 0.22 -1.81 -1.28 3.55 3.1 7.1 2025-08-24 00:10:00 0.22 -1.81 -1.28 3.55 3.1 7.1 2025-08-24 00:15:00 0.22 -1.81 -1.28 3.55 3.1 7.1 2025-08-24 00:20:00 0.22 -1.81 -1.28 3.55 3.1 7.1 ... ... ... ... ... ... ... 2025-08-24 23:35:00 0.22 -1.81 -1.28 3.55 3.1 7.1 2025-08-24 23:40:00 0.22 -1.81 -1.28 3.55 3.1 7.1 2025-08-24 23:45:00 0.22 -1.81 -1.28 3.55 3.1 7.1 2025-08-24 23:50:00 0.22 -1.81 -1.28 3.55 3.1 7.1 2025-08-24 23:55:00 0.22 -1.81 -1.28 3.55 3.1 7.1 Bus_324 Bus_325 Bus_326 2025-08-24 00:00:00 0.0 0.0 0.001353 2025-08-24 00:05:00 0.0 0.0 0.001353 2025-08-24 00:10:00 0.0 0.0 0.001971 2025-08-24 00:15:00 0.0 0.0 0.001916 2025-08-24 00:20:00 0.0 0.0 0.001507 ... ... ... ... 2025-08-24 23:35:00 0.0 0.0 0.001602 2025-08-24 23:40:00 0.0 0.0 0.001751 2025-08-24 23:45:00 0.0 0.0 0.001520 2025-08-24 23:50:00 0.0 0.0 0.002188 2025-08-24 23:55:00 0.0 0.0 0.001349 [288 rows x 74 columns], 'q': Bus_101 Bus_102 Bus_103 Bus_104 Bus_105 Bus_106 \ 2025-08-24 00:00:00 -0.127828 -0.161203 -0.37 -0.15 -0.14 -0.28 2025-08-24 00:05:00 -0.127828 -0.161203 -0.37 -0.15 -0.14 -0.28 2025-08-24 00:10:00 -0.127826 -0.161201 -0.37 -0.15 -0.14 -0.28 2025-08-24 00:15:00 -0.127826 -0.161202 -0.37 -0.15 -0.14 -0.28 2025-08-24 00:20:00 -0.127828 -0.161203 -0.37 -0.15 -0.14 -0.28 ... ... ... ... ... ... ... 2025-08-24 23:35:00 -0.127827 -0.161203 -0.37 -0.15 -0.14 -0.28 2025-08-24 23:40:00 -0.127827 -0.161202 -0.37 -0.15 -0.14 -0.28 2025-08-24 23:45:00 -0.127828 -0.161203 -0.37 -0.15 -0.14 -0.28 2025-08-24 23:50:00 -0.127825 -0.161201 -0.37 -0.15 -0.14 -0.28 2025-08-24 23:55:00 -0.127828 -0.161203 -0.37 -0.15 -0.14 -0.28 Bus_107 Bus_108 Bus_109 Bus_110 ... Bus_317 \ 2025-08-24 00:00:00 0.233837 -0.35 -0.36 -0.4 ... 0.0 2025-08-24 00:05:00 0.233837 -0.35 -0.36 -0.4 ... 0.0 2025-08-24 00:10:00 0.233838 -0.35 -0.36 -0.4 ... 0.0 2025-08-24 00:15:00 0.233838 -0.35 -0.36 -0.4 ... 0.0 2025-08-24 00:20:00 0.233837 -0.35 -0.36 -0.4 ... 0.0 ... ... ... ... ... ... ... 2025-08-24 23:35:00 0.233837 -0.35 -0.36 -0.4 ... 0.0 2025-08-24 23:40:00 0.233838 -0.35 -0.36 -0.4 ... 0.0 2025-08-24 23:45:00 0.233837 -0.35 -0.36 -0.4 ... 0.0 2025-08-24 23:50:00 0.233839 -0.35 -0.36 -0.4 ... 0.0 2025-08-24 23:55:00 0.233837 -0.35 -0.36 -0.4 ... 0.0 Bus_318 Bus_319 Bus_320 Bus_321 Bus_322 Bus_323 \ 2025-08-24 00:00:00 -0.047644 -0.37 -0.26 -0.035264 -0.399664 0.751288 2025-08-24 00:05:00 -0.047644 -0.37 -0.26 -0.035264 -0.399664 0.751288 2025-08-24 00:10:00 -0.047645 -0.37 -0.26 -0.035265 -0.399664 0.751290 2025-08-24 00:15:00 -0.047645 -0.37 -0.26 -0.035265 -0.399664 0.751290 2025-08-24 00:20:00 -0.047644 -0.37 -0.26 -0.035265 -0.399664 0.751288 ... ... ... ... ... ... ... 2025-08-24 23:35:00 -0.047644 -0.37 -0.26 -0.035265 -0.399664 0.751289 2025-08-24 23:40:00 -0.047645 -0.37 -0.26 -0.035265 -0.399664 0.751289 2025-08-24 23:45:00 -0.047644 -0.37 -0.26 -0.035265 -0.399664 0.751288 2025-08-24 23:50:00 -0.047645 -0.37 -0.26 -0.035265 -0.399664 0.751291 2025-08-24 23:55:00 -0.047644 -0.37 -0.26 -0.035264 -0.399664 0.751288 Bus_324 Bus_325 Bus_326 2025-08-24 00:00:00 0.0 0.0 -0.302477 2025-08-24 00:05:00 0.0 0.0 -0.302477 2025-08-24 00:10:00 0.0 0.0 -0.302637 2025-08-24 00:15:00 0.0 0.0 -0.302623 2025-08-24 00:20:00 0.0 0.0 -0.302517 ... ... ... ... 2025-08-24 23:35:00 0.0 0.0 -0.302541 2025-08-24 23:40:00 0.0 0.0 -0.302580 2025-08-24 23:45:00 0.0 0.0 -0.302520 2025-08-24 23:50:00 0.0 0.0 -0.302693 2025-08-24 23:55:00 0.0 0.0 -0.302476 [288 rows x 74 columns], 'v_mag': Bus_101 Bus_102 Bus_103 Bus_104 Bus_105 Bus_106 \ 2025-08-24 00:00:00 1.0468 1.0467 1.012285 1.017577 1.0362 1.033708 2025-08-24 00:05:00 1.0468 1.0467 1.012285 1.017577 1.0362 1.033708 2025-08-24 00:10:00 1.0468 1.0467 1.012284 1.017577 1.0362 1.033708 2025-08-24 00:15:00 1.0468 1.0467 1.012284 1.017577 1.0362 1.033708 2025-08-24 00:20:00 1.0468 1.0467 1.012284 1.017577 1.0362 1.033708 ... ... ... ... ... ... ... 2025-08-24 23:35:00 1.0468 1.0467 1.012284 1.017577 1.0362 1.033708 2025-08-24 23:40:00 1.0468 1.0467 1.012284 1.017577 1.0362 1.033708 2025-08-24 23:45:00 1.0468 1.0467 1.012284 1.017577 1.0362 1.033708 2025-08-24 23:50:00 1.0468 1.0467 1.012284 1.017577 1.0362 1.033708 2025-08-24 23:55:00 1.0468 1.0467 1.012285 1.017577 1.0362 1.033708 Bus_107 Bus_108 Bus_109 Bus_110 ... Bus_317 \ 2025-08-24 00:00:00 1.05 1.01711 1.026819 1.051622 ... 1.047476 2025-08-24 00:05:00 1.05 1.01711 1.026819 1.051622 ... 1.047476 2025-08-24 00:10:00 1.05 1.01711 1.026818 1.051622 ... 1.047476 2025-08-24 00:15:00 1.05 1.01711 1.026818 1.051622 ... 1.047476 2025-08-24 00:20:00 1.05 1.01711 1.026818 1.051622 ... 1.047476 ... ... ... ... ... ... ... 2025-08-24 23:35:00 1.05 1.01711 1.026818 1.051622 ... 1.047475 2025-08-24 23:40:00 1.05 1.01711 1.026818 1.051622 ... 1.047476 2025-08-24 23:45:00 1.05 1.01711 1.026818 1.051622 ... 1.047475 2025-08-24 23:50:00 1.05 1.01711 1.026818 1.051622 ... 1.047476 2025-08-24 23:55:00 1.05 1.01711 1.026819 1.051622 ... 1.047476 Bus_318 Bus_319 Bus_320 Bus_321 Bus_322 Bus_323 \ 2025-08-24 00:00:00 1.05 1.039002 1.043571 1.05 1.05 1.05 2025-08-24 00:05:00 1.05 1.039002 1.043571 1.05 1.05 1.05 2025-08-24 00:10:00 1.05 1.039002 1.043571 1.05 1.05 1.05 2025-08-24 00:15:00 1.05 1.039002 1.043571 1.05 1.05 1.05 2025-08-24 00:20:00 1.05 1.039002 1.043571 1.05 1.05 1.05 ... ... ... ... ... ... ... 2025-08-24 23:35:00 1.05 1.039002 1.043571 1.05 1.05 1.05 2025-08-24 23:40:00 1.05 1.039002 1.043571 1.05 1.05 1.05 2025-08-24 23:45:00 1.05 1.039002 1.043571 1.05 1.05 1.05 2025-08-24 23:50:00 1.05 1.039002 1.043571 1.05 1.05 1.05 2025-08-24 23:55:00 1.05 1.039002 1.043571 1.05 1.05 1.05 Bus_324 Bus_325 Bus_326 2025-08-24 00:00:00 0.998677 1.049229 1.0 2025-08-24 00:05:00 0.998677 1.049229 1.0 2025-08-24 00:10:00 0.998677 1.049229 1.0 2025-08-24 00:15:00 0.998677 1.049229 1.0 2025-08-24 00:20:00 0.998677 1.049229 1.0 ... ... ... ... 2025-08-24 23:35:00 0.998677 1.049229 1.0 2025-08-24 23:40:00 0.998677 1.049229 1.0 2025-08-24 23:45:00 0.998677 1.049229 1.0 2025-08-24 23:50:00 0.998677 1.049229 1.0 2025-08-24 23:55:00 0.998677 1.049229 1.0 [288 rows x 74 columns], 'angle_deg': Bus_101 Bus_102 Bus_103 Bus_104 Bus_105 \ 2025-08-24 00:00:00 -8.567648 -8.626429 -7.993178 -10.741543 -10.928630 2025-08-24 00:05:00 -8.567648 -8.626429 -7.993178 -10.741543 -10.928630 2025-08-24 00:10:00 -8.567255 -8.626040 -7.992678 -10.741161 -10.928258 2025-08-24 00:15:00 -8.567290 -8.626074 -7.992723 -10.741195 -10.928290 2025-08-24 00:20:00 -8.567551 -8.626332 -7.993054 -10.741447 -10.928537 ... ... ... ... ... ... 2025-08-24 23:35:00 -8.567490 -8.626273 -7.992978 -10.741389 -10.928480 2025-08-24 23:40:00 -8.567396 -8.626180 -7.992857 -10.741298 -10.928390 2025-08-24 23:45:00 -8.567542 -8.626324 -7.993043 -10.741439 -10.928529 2025-08-24 23:50:00 -8.567118 -8.625903 -7.992502 -10.741027 -10.928126 2025-08-24 23:55:00 -8.567651 -8.626432 -7.993182 -10.741545 -10.928633 Bus_106 Bus_107 Bus_108 Bus_109 Bus_110 ... \ 2025-08-24 00:00:00 -13.157954 -3.988651 -9.344119 -8.460734 -10.214824 ... 2025-08-24 00:05:00 -13.157954 -3.988651 -9.344119 -8.460734 -10.214824 ... 2025-08-24 00:10:00 -13.157595 -3.988230 -9.343723 -8.460360 -10.214471 ... 2025-08-24 00:15:00 -13.157626 -3.988267 -9.343759 -8.460392 -10.214502 ... 2025-08-24 00:20:00 -13.157866 -3.988546 -9.344021 -8.460642 -10.214735 ... ... ... ... ... ... ... ... 2025-08-24 23:35:00 -13.157810 -3.988482 -9.343961 -8.460585 -10.214682 ... 2025-08-24 23:40:00 -13.157722 -3.988380 -9.343864 -8.460492 -10.214597 ... 2025-08-24 23:45:00 -13.157857 -3.988536 -9.344013 -8.460634 -10.214727 ... 2025-08-24 23:50:00 -13.157468 -3.988083 -9.343584 -8.460227 -10.214347 ... 2025-08-24 23:55:00 -13.157957 -3.988653 -9.344122 -8.460737 -10.214827 ... Bus_317 Bus_318 Bus_319 Bus_320 Bus_321 \ 2025-08-24 00:00:00 5.119365 6.217644 0.849944 2.455866 6.905159 2025-08-24 00:05:00 5.119365 6.217644 0.849944 2.455866 6.905159 2025-08-24 00:10:00 5.119983 6.218256 0.850579 2.456509 6.905776 2025-08-24 00:15:00 5.119928 6.218202 0.850523 2.456452 6.905721 2025-08-24 00:20:00 5.119518 6.217796 0.850102 2.456026 6.905313 ... ... ... ... ... ... 2025-08-24 23:35:00 5.119614 6.217890 0.850199 2.456125 6.905406 2025-08-24 23:40:00 5.119762 6.218038 0.850353 2.456280 6.905555 2025-08-24 23:45:00 5.119533 6.217810 0.850116 2.456040 6.905327 2025-08-24 23:50:00 5.120199 6.218472 0.850802 2.456735 6.905991 2025-08-24 23:55:00 5.119361 6.217639 0.849939 2.455861 6.905156 Bus_322 Bus_323 Bus_324 Bus_325 Bus_326 2025-08-24 00:00:00 12.932658 4.056374 -5.497188 4.597470 9.132870 2025-08-24 00:05:00 12.932658 4.056374 -5.497188 4.597470 9.132870 2025-08-24 00:10:00 12.933276 4.057022 -5.496562 4.598123 9.139927 2025-08-24 00:15:00 12.933221 4.056964 -5.496617 4.598064 9.139299 2025-08-24 00:20:00 12.932813 4.056535 -5.497032 4.597632 9.134625 ... ... ... ... ... ... 2025-08-24 23:35:00 12.932906 4.056634 -5.496936 4.597732 9.135706 2025-08-24 23:40:00 12.933056 4.056790 -5.496785 4.597890 9.137410 2025-08-24 23:45:00 12.932825 4.056550 -5.497018 4.597646 9.134779 2025-08-24 23:50:00 12.933492 4.057249 -5.496343 4.598352 9.142400 2025-08-24 23:55:00 12.932654 4.056369 -5.497192 4.597465 9.132820 [288 rows x 74 columns]}
In [8]:
Copied!
example4.pypsa.grid
example4.pypsa.grid
Out[8]:
GridState: ├─ Components: │ ├─ bus: 74 components │ ├─ gen: 99 components │ ├─ line: 106 components │ └─ load: 51 components ├─ Case: RTS GMLC Hooman └─ Modeler: pypsa
Analyze, visualize and compare results¶
In [9]:
Copied!
# add our 'external' grid to WEC-Grid
example4.plot.add_grid(software='psse', grid_state=psse_grid)
# add our 'external' grid to WEC-Grid
example4.plot.add_grid(software='psse', grid_state=psse_grid)
In [10]:
Copied!
example4.plot.bus("pypsa",)
example4.plot.bus("psse")
example4.plot.bus(software="pypsa", bus=['Bus_326'])
example4.plot.bus(software="psse", bus=['Bus_326'])
example4.plot.bus(software="pypsa", bus=['Bus_123'])
example4.plot.bus(software="psse", bus=['Bus_123'])
example4.plot.bus("pypsa",)
example4.plot.bus("psse")
example4.plot.bus(software="pypsa", bus=['Bus_326'])
example4.plot.bus(software="psse", bus=['Bus_326'])
example4.plot.bus(software="pypsa", bus=['Bus_123'])
example4.plot.bus(software="psse", bus=['Bus_123'])
Out[10]:
(<Figure size 1200x600 with 1 Axes>, <AxesSubplot:title={'center':'PSSE: Bus Active Power (net)'}, xlabel='Time', ylabel='Active Power [pu]'>)
compare¶
In [13]:
Copied!
example4.plot.compare_modelers(grid_component='bus', name=['Bus_326'], parameter='p')
example4.plot.compare_modelers(grid_component='bus', name=['Bus_123'], parameter='p')
example4.plot.compare_modelers(grid_component='bus', name=['Bus_113'], parameter='p')
example4.plot.compare_modelers(grid_component='bus', name=['Bus_326'], parameter='p')
example4.plot.compare_modelers(grid_component='bus', name=['Bus_123'], parameter='p')
example4.plot.compare_modelers(grid_component='bus', name=['Bus_113'], parameter='p')
In [ ]:
Copied!